百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Web 端实时防挡脸弹幕(基于机器学习)

myzbx 2025-04-08 16:46 31 浏览

刘俊 哔哩哔哩技术 2023-06-09 12:00 发表于上海


本期作者



刘俊

哔哩哔哩资深开发工程师


前言


防挡脸弹幕,即大量弹幕飘过,但不会遮挡视频画面中的人物,看起来像是从人物背后飘过去的。



机器学习已经火了好几年了,但很多人都不知道浏览器中也能运行这些能力;

本文介绍在视频弹幕方面的实践优化过程,文末列举了一些本方案可适用的场景,期望能开启一些脑洞。

mediapipe Demo(
https://google.github.io/mediapipe/
)展示


,时长00:05


主流防挡脸弹幕实现原理


点播


  1. up 上传视频
  2. 服务器后台计算提取视频画面中的人像区域,转换成 svg 存储
  3. 客户端播放视频的同时,从服务器下载 svg 与弹幕合成,人像区域不显示弹幕


直播


  1. 主播推流时,实时(主播设备)从画面提取人像区域,转换成 svg
  2. 将 svg 数据合并到视频流中(SEI),推流至服务器
  3. 客户端播放视频同时,从视频流中(SEI)解析出 svg
  4. 将 svg 与弹幕合成,人像区域不显示弹幕


本文实现方案


客户端播放视频同时,实时从画面提取人像区域信息,将人像区域信息导出成图片与弹幕合成,人像区域不显示弹幕。


实现原理


  1. 采用机器学习开源库从视频画面实时提取人像轮廓,如Body Segmentationhttps://github.com/tensorflow/tfjs-models/blob/master/body-segmentation/README.md
  2. 将人像轮廓转导出为图片,设置弹幕层的 mask-imagehttps://developer.mozilla.org/zh-CN/docs/Web/CSS/mask-image


对比传统(直播SEI实时)方案


优点:

  • 易于实现;只需要Video标签一个参数,无需多端协同配合
  • 无网络带宽消耗

缺点:

  • 理论性能极限劣于传统方案;相当于性能资源换网络资源


面临的问题


众所周知“JS 性能太辣鸡”,不适合执行 CPU 密集型任务。
由官方demo变成工程实践,最大的挑战就是——性能。

本次实践最终将 CPU 占用优化到 5% 左右(2020 M1 Macbook),达到生产可用状态。


实践调优过程


选择机器学习模型


BodyPixhttps://github.com/tensorflow/tfjs-models/blob/master/body-segmentation/src/body_pix/README.md

精确度太差,面部偏窄,有很明显的弹幕与人物面部边缘重叠现象



BlazePosehttps://github.com/tensorflow/tfjs-models/blob/master/pose-detection/src/blazepose_mediapipe/README.md

精确度优秀,且提供了肢体点位信息,但性能较差



返回数据结构示例

[
  {
    score: 0.8,
    keypoints: [
      {x: 230, y: 220, score: 0.9, score: 0.99, name: "nose"},
      {x: 212, y: 190, score: 0.8, score: 0.91, name: "left_eye"},
      ...
    ],
    keypoints3D: [
      {x: 0.65, y: 0.11, z: 0.05, score: 0.99, name: "nose"},
      ...
    ],
    segmentation: {
      maskValueToLabel: (maskValue: number) => { return 'person' },
      mask: {
        toCanvasImageSource(): ...
        toImageData(): ...
        toTensor(): ...
        getUnderlyingType(): ...
      }
    }
  }
]


MediaPipe SelfieSegmentationhttps://github.com/tensorflow/tfjs-models/blob/master/body-segmentation/src/selfie_segmentation_mediapipe/README.md

精确度优秀(跟 BlazePose 模型效果一致),CPU 占用相对 BlazePose 模型降低 15% 左右,性能取胜,但返回数据中不提供肢体点位信息

返回数据结构示例

{
  maskValueToLabel: (maskValue: number) => { return 'person' },
  mask: {
    toCanvasImageSource(): ...
    toImageData(): ...
    toTensor(): ...
    getUnderlyingType(): ...
  }
}


初版实现


参考 MediaPipe SelfieSegmentation 模型 官方实现
https://github.com/tensorflow/tfjs-models/blob/master/body-segmentation/README.md#bodysegmentationdrawmask
),未做优化的情况下 CPU 占用 70% 左右


const canvas = document.createElement('canvas')
canvas.width = videoEl.videoWidth
canvas.height = videoEl.videoHeight
async function detect (): Promise {
  const segmentation = await segmenter.segmentPeople(videoEl)
  const foregroundColor = { r: 0, g: 0, b: 0, a: 0 }
  const backgroundColor = { r: 0, g: 0, b: 0, a: 255 }
 
  const mask = await toBinaryMask(segmentation, foregroundColor, backgroundColor)
 
  await drawMask(canvas, canvas, mask, 1, 9)
  // 导出Mask图片,需要的是轮廓,图片质量设为最低
  handler(canvas.toDataURL('image/png', 0))
 
  window.setTimeout(detect, 33)
}
 
detect().catch(console.error)


降低提取频率,平衡 性能-体验


一般视频 30FPS,尝试弹幕遮罩(后称 Mask)刷新频率降为 15FPS,体验上还能接受


window.setTimeout(detect, 66) // 33 => 66


此时,CPU 占用 50% 左右


解决性能瓶颈



分析火焰图可发现,性能瓶颈在 toBinaryMask 和 toDataURL


重写toBinaryMask


分析源码,结合打印segmentation的信息,发现
segmentation.mask.toCanvasImageSource可获取原始ImageBitmap对象,即是模型提取出来的信息。

尝试自行实现将ImageBitmap转换成 Mask 的能力,替换开源库提供的默认实现。


实现原理


async function detect (): Promise {
  const segmentation = await segmenter.segmentPeople(videoEl)
 
  context.clearRect(0, 0, canvas.width, canvas.height)
  // 1. 将`ImageBitmap`绘制到 Canvas 上
  context.drawImage(
    // 经验证 即使出现多人,也只有一个 segmentation
    await segmentation[0].mask.toCanvasImageSource(),
    0, 0,
    canvas.width, canvas.height
  )
  // 2. 设置混合模式
  context.globalCompositeOperation = 'source-out'
  // 3. 反向填充黑色
  context.fillRect(0, 0, canvas.width, canvas.height)
  // 导出Mask图片,需要的是轮廓,图片质量设为最低
  handler(canvas.toDataURL('image/png', 0))
 
  window.setTimeout(detect, 66)
}


第 2、3 步相当于给人像区域外的内容填充黑色(反向填充ImageBitmap),是为了配合css(mask-image), 不然只有当弹幕飘到人像区域才可见(与目标效果正好相反)。

globalCompositeOperation MDNhttps://developer.mozilla.org/zh-CN/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation

此时,CPU 占用 33% 左右


多线程优化


只剩下toDataURL这个耗时操作了,本以为toDataURL是浏览器内部实现,无法再进行优化了。

虽没有替换实现,但可使用 OffscreenCanvas (
https://developer.mozilla.org/zh-CN/docs/Web/API/OffscreenCanvas
)+ Worker,将耗时任务转移到 Worker 中去, 避免占用主线程,就不会影响用户体验了。

并且ImageBitmap实现了Transferable接口,可被转移所有权,跨 Worker 传递也没有性能损耗
https://hughfenghen.github.io/fe-basic-course/js-concurrent.html#
%E4%B8%A4%E4%B8%AA%E6%96%B9%E6%B3%95%E5%AF%B9%E6%AF%94
)。


// 前文 detect 的反向填充 ImageBitmap 也可以转移到 Worker 中
// 用 OffscreenCanvas 实现, 此处略过
 
const reader = new FileReaderSync()
// OffscreenCanvas 不支持 toDataURL,使用 convertToBlob 代替
offsecreenCvsEl.convertToBlob({
  type: 'image/png',
  quality: 0
}).then((blob) => {
  const dataURL = reader.readAsDataURL(blob)
  self.postMessage({
    msgType: 'mask',
    val: dataURL
  })
}).catch(console.error)



可以看到两个耗时的操作消失了

此时,CPU 占用 15% 左右


降低分辨率


继续分析,上图重新计算样式(紫色部分)耗时约 3ms

Demo 足够简单很容易推测到是这行代码导致的,发现 imgStr 大概 100kb 左右(视频分辨率 1280x720)。


danmakuContainer.style.webkitMaskImage = `url(${imgStr})


通过canvas缩小图片尺寸(360P甚至更低),再进行推理。


优化后,导出的 imgStr 大概 12kb,重新计算样式耗时约 0.5ms。

此时,CPU 占用 5% 左右



启动条件优化


虽然提取 Mask 整个过程的 CPU 占用已优化到可喜程度。

当在画面没人的时候,或没有弹幕时候,可以停止计算,实现 0 CPU 占用。

无弹幕判断比较简单(比如 10s 内收超过两条弹幕则启动计算),也不在该 SDK 实现范围,略过


判定画面是否有人


第一步中为了高性能,选择的模型只有ImageBitmap,并没有提供肢体点位信息,所以只能使用getImageData返回的像素点值来判断画面是否有人。


画面无人时,CPU 占用接近 0%


发布构建优化


依赖包的提交较大,构建出的 bundle 体积:684.75 KiB / gzip: 125.83 KiB

所以,可以进行异步加载SDK,提升页面加载性能。

  1. 分别打包一个 loader,一个主体
  2. 由业务方 import loader,首次启用时异步加载主体

这个两步前端工程已经非常成熟了,略过细节。


运行效果


,时长00:13


总结


过程


  • 选择高性能模型后,初始状态 CPU 70%
  • 降低 Mask 刷新频率(15FPS),CPU 50%
  • 重写开源库实现(toBinaryMask),CPU 33%
  • 多线程优化,CPU 15%
  • 降低分辨率,CPU 5%
  • 判断画面是否有人,无人时 CPU 接近 0%

CPU 数值指主线程占用


注意事项


  • 兼容性:Chrome 79及以上,不支持 Firefox、Safari。因为使用了OffscreenCanvas
  • 不应创建多个或多次创建segmenter实例(bodySegmentation.createSegmenter),如需复用请保存实例引用,因为:
  • 创建实例时低性能设备会有明显的卡顿现象
  • 会内存泄露;如果无法避免,这是mediapipe 内存泄露 解决方法https://github.com/google/mediapipe/issues/2819#issuecomment-1160335349


经验


  • 优化完成之后,提取并应用 Mask 关键计算量在 GPU (30%左右),而不是 CPU
  • 性能优化需要业务场景分析,防挡弹幕场景可以使用低分辨率、低刷新率的 mask-image,能大幅减少计算量
  • 该方案其他应用场景:
  • 替换/模糊人物背景
  • 人像马赛克
  • 人像抠图
  • 卡通头套,虚拟饰品,如猫耳朵、兔耳朵、带花、戴眼镜什么的(换一个模型,略改)
  • 关注Web 神经网络 API https://mp.weixin.qq.com/s/v7-xwYJqOfFDIAvwIVZVdg)进展,以后实现相关功能也许会更简单


以上是今天的分享内容,如果你有什么想法或疑问,欢迎大家在留言区与我们互动,如果喜欢本期内容的话,欢迎点个“在看”吧!

相关推荐

如何设计一个优秀的电子商务产品详情页

加入人人都是产品经理【起点学院】产品经理实战训练营,BAT产品总监手把手带你学产品电子商务网站的产品详情页面无疑是设计师和开发人员关注的最重要的网页之一。产品详情页面是客户作出“加入购物车”决定的页面...

怎么在JS中使用Ajax进行异步请求?

大家好,今天我来分享一项JavaScript的实战技巧,即如何在JS中使用Ajax进行异步请求,让你的网页速度瞬间提升。Ajax是一种在不刷新整个网页的情况下与服务器进行数据交互的技术,可以实现异步加...

中小企业如何组建,管理团队_中小企业应当如何开展组织结构设计变革

前言写了太多关于产品的东西觉得应该换换口味.从码农到架构师,从前端到平面再到UI、UE,最后走向了产品这条不归路,其实以前一直再给你们讲.产品经理跟项目经理区别没有特别大,两个岗位之间有很...

前端监控 SDK 开发分享_前端监控系统 开源

一、前言随着前端的发展和被重视,慢慢的行业内对于前端监控系统的重视程度也在增加。这里不对为什么需要监控再做解释。那我们先直接说说需求。对于中小型公司来说,可以直接使用三方的监控,比如自己搭建一套免费的...

Ajax 会被 fetch 取代吗?Axios 怎么办?

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发!今天给大家带来的主题是ajax、fetch...

前端面试题《AJAX》_前端面试ajax考点汇总

1.什么是ajax?ajax作用是什么?AJAX=异步JavaScript和XML。AJAX是一种用于创建快速动态网页的技术。通过在后台与服务器进行少量数据交换,AJAX可以使网页实...

Ajax 详细介绍_ajax

1、ajax是什么?asynchronousjavascriptandxml:异步的javascript和xml。ajax是用来改善用户体验的一种技术,其本质是利用浏览器内置的一个特殊的...

6款可替代dreamweaver的工具_替代powerdesigner的工具

dreamweaver对一个web前端工作者来说,再熟悉不过了,像我07年接触web前端开发就是用的dreamweaver,一直用到现在,身边的朋友有跟我推荐过各种更好用的可替代dreamweaver...

我敢保证,全网没有再比这更详细的Java知识点总结了,送你啊

接下来你看到的将是全网最详细的Java知识点总结,全文分为三大部分:Java基础、Java框架、Java+云数据小编将为大家仔细讲解每大部分里面的详细知识点,别眨眼,从小白到大佬、零基础到精通,你绝...

福斯《死侍》发布新剧照 "小贱贱"韦德被改造前造型曝光

时光网讯福斯出品的科幻片《死侍》今天发布新剧照,其中一张是较为罕见的死侍在被改造之前的剧照,其余两张剧照都是死侍在执行任务中的状态。据外媒推测,片方此时发布剧照,预计是为了给不久之后影片发布首款正式预...

2021年超详细的java学习路线总结—纯干货分享

本文整理了java开发的学习路线和相关的学习资源,非常适合零基础入门java的同学,希望大家在学习的时候,能够节省时间。纯干货,良心推荐!第一阶段:Java基础重点知识点:数据类型、核心语法、面向对象...

不用海淘,真黑五来到你身边:亚马逊15件热卖爆款推荐!

Fujifilm富士instaxMini8小黄人拍立得相机(黄色/蓝色)扫二维码进入购物页面黑五是入手一个轻巧可爱的拍立得相机的好时机,此款是mini8的小黄人特别版,除了颜色涂装成小黄人...

2025 年 Python 爬虫四大前沿技术:从异步到 AI

作为互联网大厂的后端Python爬虫开发,你是否也曾遇到过这些痛点:面对海量目标URL,单线程爬虫爬取一周还没完成任务;动态渲染的SPA页面,requests库返回的全是空白代码;好不容易...

最贱超级英雄《死侍》来了!_死侍超燃

死侍Deadpool(2016)导演:蒂姆·米勒编剧:略特·里斯/保罗·沃尼克主演:瑞恩·雷诺兹/莫蕾娜·巴卡林/吉娜·卡拉诺/艾德·斯克林/T·J·米勒类型:动作/...

停止javascript的ajax请求,取消axios请求,取消reactfetch请求

一、Ajax原生里可以通过XMLHttpRequest对象上的abort方法来中断ajax。注意abort方法不能阻止向服务器发送请求,只能停止当前ajax请求。停止javascript的ajax请求...