百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

编辑距离算法详解:Levenshtein Distance算法

myzbx 2025-06-28 15:27 28 浏览

算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等于0时,也就是说串s为空,那么对应的d[0,j] 就是 增加j个字符,使得s转化为t,在j等于0时,也就是说串t为空,那么对应的d[i,0] 就是 减少 i个字符,使得s转化为t。

然后我们考虑一般情况,加一点动态规划的想法,我们要想得到将s[1..i]经过最少次数的增加,删除,或者替换操作就转变为t[1..j],那么我们就必须在之前可以以最少次数的增加,删除,或者替换操作,使得现在串s和串t只需要再做一次操作或者不做就可以完成s[1..i]到t[1..j]的转换。所谓的“之前”分为下面三种情况:

1)我们可以在k个操作内将 s[1…i] 转换为 t[1…j-1]

2)我们可以在k个操作里面将s[1..i-1]转换为t[1..j]

3)我们可以在k个步骤里面将 s[1…i-1] 转换为 t [1…j-1]

针对第1种情况,我们只需要在最后将 t[j] 加上s[1..i]就完成了匹配,这样总共就需要k+1个操作。

针对第2种情况,我们只需要在最后将s[i]移除,然后再做这k个操作,所以总共需要k+1个操作。

针对第3种情况,我们只需要在最后将s[i]替换为 t[j],使得满足s[1..i] == t[1..j],这样总共也需要k+1个操作。而如果在第3种情况下,s[i]刚好等于t[j],那我们就可以仅仅使用k个操作就完成这个过程。

最后,为了保证得到的操作次数总是最少的,我们可以从上面三种情况中选择消耗最少的一种最为将s[1..i]转换为t[1..j]所需要的最小操作次数。

算法基本步骤:

(1)构造 行数为m+1 列数为 n+1 的矩阵 , 用来保存完成某个转换需要执行的操作的次数,将串s[1..n] 转换到 串t[1…m] 所需要执行的操作次数为matrix[n][m]的值;

(2)初始化matrix第一行为0到n,第一列为0到m。

Matrix[0][j]表示第1行第j-1列的值,这个值表示将串s[1…0]转换为t[1..j]所需要执行的操作的次数,很显然将一个空串转换为一个长度为j的串,只需要j次的add操作,所以matrix[0][j]的值应该是j,其他值以此类推。

(3)检查每个从1到n的s[i]字符;

(4)检查每个从1到m的s[i]字符;

(5)将串s和串t的每一个字符进行两两比较,如果相等,则让cost为0,如果不等,则让cost为1(这个cost后面会用到);

(6)a、如果我们可以在k个操作里面将s[1..i-1]转换为t[1..j],那么我们就可以将s[i]移除,然后再做这k个操作,所以总共需要k+1个操作。

b、如果我们可以在k个操作内将 s[1…i] 转换为 t[1…j-1] ,也就是说d[i,j-1]=k,那么我们就可以将 t[j] 加上s[1..i],这样总共就需要k+1个操作。

c、如果我们可以在k个步骤里面将 s[1…i-1] 转换为 t [1…j-1],那么我们就可以将s[i]转换为 t[j],使得满足s[1..i] == t[1..j],这样总共也需要k+1个操作。(这里加上cost,是因为如果s[i]刚好等于t[j],那么就不需要再做替换操作,即可满足,如果不等,则需要再做一次替换操作,那么就需要k+1次操作)

因为我们要取得最小操作的个数,所以我们最后还需要将这三种情况的操作个数进行比较,取最小值作为d[i,j]的值;

d、然后重复执行3,4,5,6,最后的结果就在d[n,m]中;

图解:

图解过程如下:

step 1:初始化如下矩阵

step 2:从源串的第一个字符(“j”)开始,从上至下与目标串进行对比

如果两个字符相等,则在从此位置的左,上,左上三个位置中取出最小的值;若不等,则在从此位置的左,上,左上三个位置中取出最小的值再加上1;

第一次,源串第一个字符“j” 与目标串的“j”对比,左,上,左上三个位置中取出最小的值0,因为两字符相等,所以加上0;接着,依次对比“j”→“e”,“j”→“r”,“j”→“r”,,“j”→“y” 到扫描完目标串。

step 3:遍历整个源串与目标串对比:

step 4:扫描完最后一列,则最后一个为最短编辑距离:

求出编辑距离,那么两个字符串的相似度 Similarity = (Max(x,y) - Levenshtein)/Max(x,y),其中 x,y 为源串和目标串的长度。

核心代码如下:

 public class LevenshteinDistance
    {
        private static LevenshteinDistance _instance = null;
        public static LevenshteinDistance Instance
        {
 get
 {
 if (_instance == null)
 {
 return new LevenshteinDistance;
 }
 return _instance;
 }
        }
      
        public int LowerOfThree(int first, int second, int third)
        {
 int min = first;
 if (second < min)
 min = second;
 if (third < min)
 min = third;
 return min;
        }

        public int Compare_Distance(string str1, string str2)
        {
 int[,] Matrix;
 int n = str1.Length;
 int m = str2.Length;

 int temp = 0;
 char ch1;
 char ch2;
 int i = 0;
 int j = 0;
 if (n == 0)
 {
 return m;
 }
 if (m == 0)
 {

 return n;
 }
 Matrix = new int[n + 1, m + 1];

 for (i = 0; i <= n; i++)
 {
 Matrix[i, 0] = i;
 }

 for (j = 0; j <= m; j++)
 {
 Matrix[0, j] = j;
 }

 for (i = 1; i <= n; i++)
 {
 ch1 = str1[i - 1];
 for (j = 1; j <= m; j++)
 {
 ch2 = str2[j - 1];
 if (ch1.Equals(ch2))
 {
 temp = 0;
 }
 else
 {
 temp = 1;
 }
 Matrix[i, j] = LowerOfThree(Matrix[i - 1, j] + 1, Matrix[i, j - 1] + 1, Matrix[i - 1, j - 1] + temp);
 }
 }
 
 return Matrix[n, m];

        }

        public decimal LevenshteinDistancePercent(string str1, string str2)
        {
 int maxLenth = str1.Length > str2.Length ? str1.Length : str2.Length;
 int val = Compare_Distance(str1, str2);
 return 1 - (decimal)val / maxLenth;
        }
    }  

相关推荐

零基础入门AI智能体:详细了解什么是变量类型、JSON结构、Markdown格式

当品牌跳出固有框架,以跨界联动、场景创新叩击年轻群体的兴趣点,一场关于如何在迭代中保持鲜活的探索正在展开,既藏着破圈的巧思,也映照着与新一代对话的密码。在创建AI智能体时,我们会调用插件或大模型,而在...

C# 13模式匹配:递归模式与属性模式在真实代码中的性能影响分析

C#13对模式匹配的增强让复杂数据处理代码更简洁,但递归模式与属性模式的性能差异一直是开发者关注的焦点。在实际项目中,选择合适的模式不仅影响代码可读性,还可能导致执行效率的显著差异。本文结合真实测试...

零基础快速入门 VBA 系列 6 —— 常用对象(工作簿、工作表和区域)

上一节,我介绍了VBA内置函数以及如何自动打字和自动保存文件。这一节,我们来了解一下Excel常用对象。Excel常用对象Excel有很多对象,其中最常用也最重要的包括以下3个:1.Workbo...

不同生命数字的生肖龙!准到雷普!

属龙的人总在自信爆棚和自讨苦吃之间反复横跳?看完这届龙宝宝的日常我悟了。属龙的人好像天生自带矛盾体:领导力超强可人缘时好时坏,工作雷厉风行却总在爱情里翻车。关键年份的龙性格差异更大——76年龙靠谱但不...

仓颉编程语言基础-面向对象编程-属性(Properties)

属性是仓颉颉中一种强大的机制,它允许你封装对类(或接口interface、结构体struct、枚举enum、扩展extend)内部状态的访问。它看起来像一个普通的成员变量(字段),但在其背后,它通过...

Python中class对象/属性/方法/继承/多态/魔法方法详解

一、基础入门:认识类和对象1.类和对象的概念在Python中,类(class)是一种抽象的概念,用于定义对象的属性和行为,而对象(也称为实例)则是类的具体表现。比如,“汽车”可以是一个类,它有...

VBA基础入门:搞清楚对象、属性和方法就成功了一半

如果你刚接触VBA(VisualBasicforApplications),可能会被“对象”“属性”“方法”这些术语搞得一头雾水。但事实上,这三个概念是VBA编程的基石。只要理解它们之间的关系,...

P.O类型文推荐|年度编推合集(一百九十五篇)

点击左上方关注获取更多精彩推文目录2019年度编推35篇(1V1)《悖论》作者:流苏.txt(1V1)《桂花蒸》作者:大姑娘浪.txt(1V1)《豪门浪女》作者:奚行.txt...

Python参数传递内存大揭秘:可变对象 vs 不可变对象

90%的Python程序员不知道,函数参数传递中可变对象的修改竟会导致意想不到的副作用!一、参数传递的本质:对象引用传递在Python中,所有参数传递都是对象引用的传递。这意味着函数调用时传递的不是对...

JS 开发者必看!TC39 2025 最新动向,这些新语法要火?

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力。TC39第...

2025 年值得尝试的 5 个被低估的 JavaScript 库

这些JavaScript库可能不会在社交媒体或HackerNews上流行起来,但它们会显著提高您的工作效率和代码质量。JavaScript不再只是框架。虽然React、Vue和Sv...

Python自动化办公应用学习笔记30—函数的参数

一、函数的参数1.形参:o定义:在函数定义时,声明在函数名后面括号中的变量。o作用:它们是函数内部的占位符变量,用于接收函数被调用时传入的实际值。o生命周期:在函数被调用时创建,在函数执...

16种MBTI人格全解析|测完我沉默了三秒:原来我是这样的人?

MBTI性格测试火了这么久,你还不知道自己是哪一型?有人拿它当社交话题,有人拿它分析老板性格,还有人干脆当成择偶参考表。不废话,今天我一次性给你整理全部16种MBTI人格类型!看完你不仅能知道自己是谁...

JS基础与高级应用: 性能优化

在现代Web开发中,性能优化已成为前端工程师必须掌握的核心技能之一。本文从URL输入到页面加载完成的全过程出发,深入分析了HTTP协议的演进、域名解析、代码层面性能优化以及编译与渲染的最佳实践。通过节...

爱思创CSP-J/S初赛模拟赛线上开赛!助力冲入2024年CSP-J/S复赛!

CSP-J/S组初赛模拟赛爱思创,专注信奥教育19年,2022年CSP-J/S组赛事指定考点,特邀NOIP教练,开启全真实CSP-J/S组线上初赛模拟大赛!一、比赛对象:2024年备考CSP-J/S初...