百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Google相似图片搜索的原理概述

myzbx 2025-02-08 12:03 26 浏览

上个月,Google把"相似图片搜索"正式放上了首页。

你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜索框中照相机的图标。

一个对话框会出现。

你输入网片的网址,或者直接上传图片,Google就会找出与其相似的图片。下面这张图片是美国女演员Alyson Hannigan。

上传后,Google返回如下结果:

类似的"相似图片搜索引擎"还有不少,TinEye甚至可以找出照片的拍摄背景。

==========================================================

这种技术的原理是什么?计算机怎么知道两张图片相似呢?

根据Neal Krawetz博士的解释,原理非常简单易懂。我们可以用一个快速算法,就达到基本的效果。

这里的关键技术叫做"感知哈希算法"(Perceptual hash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。

下面是一个最简单的实现:

第一步,缩小尺寸。

将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。

第二步,简化色彩。

将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。

第三步,计算平均值。

计算所有64个像素的灰度平均值。

第四步,比较像素的灰度。

将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。

第五步,计算哈希值。

将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。

= = 8f373714acfcf4d0

得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。

具体的代码实现,可以参见Wote用python语言写的imgHash.py。代码很短,只有53行。使用的时候,第一个参数是基准图片,第二个参数是用来比较的其他图片所在的目录,返回结果是两张图片之间不相同的数据位数量(汉明距离)。

这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。

实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。

昨天,我在isnowfy的网站看到,还有其他两种方法也很简单,这里做一些笔记。

一、颜色分布法

每张图片都可以生成颜色分布的直方图(color histogram)。如果两张图片的直方图很接近,就可以认为它们很相似。

任何一种颜色都是由红绿蓝三原色(RGB)构成的,所以上图共有4张直方图(三原色直方图 + 最后合成的直方图)。

如果每种原色都可以取256个值,那么整个颜色空间共有1600万种颜色(256的三次方)。针对这1600万种颜色比较直方图,计算量实在太大了,因此需要采用简化方法。可以将0~255分成四个区:0~63为第0区,64~127为第1区,128~191为第2区,192~255为第3区。这意味着红绿蓝分别有4个区,总共可以构成64种组合(4的3次方)。

任何一种颜色必然属于这64种组合中的一种,这样就可以统计每一种组合包含的像素数量。

上图是某张图片的颜色分布表,将表中最后一栏提取出来,组成一个64维向量(7414, 230, 0, 0, 8, ..., 109, 0, 0, 3415, 53929)。这个向量就是这张图片的特征值或者叫"指纹"。

于是,寻找相似图片就变成了找出与其最相似的向量。这可以用皮尔逊相关系数或者余弦相似度算出。

二、内容特征法

除了颜色构成,还可以从比较图片内容的相似性入手。

首先,将原图转成一张较小的灰度图片,假定为50x50像素。然后,确定一个阈值,将灰度图片转成黑白图片。

如果两张图片很相似,它们的黑白轮廓应该是相近的。于是,问题就变成了,第一步如何确定一个合理的阈值,正确呈现照片中的轮廓?

显然,前景色与背景色反差越大,轮廓就越明显。这意味着,如果我们找到一个值,可以使得前景色和背景色各自的"类内差异最小"(minimizing the intra-class variance),或者"类间差异最大"(maximizing the inter-class variance),那么这个值就是理想的阈值。

1979年,日本学者大津展之证明了,"类内差异最小"与"类间差异最大"是同一件事,即对应同一个阈值。他提出一种简单的算法,可以求出这个阈值,这被称为"大津法"(Otsu's method)。下面就是他的计算方法。

假定一张图片共有n个像素,其中灰度值小于阈值的像素为 n1 个,大于等于阈值的像素为 n2 个( n1 + n2 = n )。w1 和 w2 表示这两种像素各自的比重。

w1 = n1 / n

w2 = n2 / n

再假定,所有灰度值小于阈值的像素的平均值和方差分别为 μ1 和 σ1,所有灰度值大于等于阈值的像素的平均值和方差分别为 μ2 和 σ2。于是,可以得到

类内差异 = w1(σ1的平方) + w2(σ2的平方)

类间差异 = w1w2(μ1-μ2)^2

可以证明,这两个式子是等价的:得到"类内差异"的最小值,等同于得到"类间差异"的最大值。不过,从计算难度看,后者的计算要容易一些。

下一步用"穷举法",将阈值从灰度的最低值到最高值,依次取一遍,分别代入上面的算式。使得"类内差异最小"或"类间差异最大"的那个值,就是最终的阈值。具体的实例和Java算法,请看这里。

有了50x50像素的黑白缩略图,就等于有了一个50x50的0-1矩阵。矩阵的每个值对应原图的一个像素,0表示黑色,1表示白色。这个矩阵就是一张图片的特征矩阵。

两个特征矩阵的不同之处越少,就代表两张图片越相似。这可以用"异或运算"实现(即两个值之中只有一个为1,则运算结果为1,否则运算结果为0)。对不同图片的特征矩阵进行"异或运算",结果中的1越少,就是越相似的图片。

作者:阮一峰

来源:阮一峰的网络日志

原文地址:

http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html

http://www.ruanyifeng.com/blog/2013/03/similar_image_search_part_ii.html

相关推荐

零基础入门AI智能体:详细了解什么是变量类型、JSON结构、Markdown格式

当品牌跳出固有框架,以跨界联动、场景创新叩击年轻群体的兴趣点,一场关于如何在迭代中保持鲜活的探索正在展开,既藏着破圈的巧思,也映照着与新一代对话的密码。在创建AI智能体时,我们会调用插件或大模型,而在...

C# 13模式匹配:递归模式与属性模式在真实代码中的性能影响分析

C#13对模式匹配的增强让复杂数据处理代码更简洁,但递归模式与属性模式的性能差异一直是开发者关注的焦点。在实际项目中,选择合适的模式不仅影响代码可读性,还可能导致执行效率的显著差异。本文结合真实测试...

零基础快速入门 VBA 系列 6 —— 常用对象(工作簿、工作表和区域)

上一节,我介绍了VBA内置函数以及如何自动打字和自动保存文件。这一节,我们来了解一下Excel常用对象。Excel常用对象Excel有很多对象,其中最常用也最重要的包括以下3个:1.Workbo...

不同生命数字的生肖龙!准到雷普!

属龙的人总在自信爆棚和自讨苦吃之间反复横跳?看完这届龙宝宝的日常我悟了。属龙的人好像天生自带矛盾体:领导力超强可人缘时好时坏,工作雷厉风行却总在爱情里翻车。关键年份的龙性格差异更大——76年龙靠谱但不...

仓颉编程语言基础-面向对象编程-属性(Properties)

属性是仓颉颉中一种强大的机制,它允许你封装对类(或接口interface、结构体struct、枚举enum、扩展extend)内部状态的访问。它看起来像一个普通的成员变量(字段),但在其背后,它通过...

Python中class对象/属性/方法/继承/多态/魔法方法详解

一、基础入门:认识类和对象1.类和对象的概念在Python中,类(class)是一种抽象的概念,用于定义对象的属性和行为,而对象(也称为实例)则是类的具体表现。比如,“汽车”可以是一个类,它有...

VBA基础入门:搞清楚对象、属性和方法就成功了一半

如果你刚接触VBA(VisualBasicforApplications),可能会被“对象”“属性”“方法”这些术语搞得一头雾水。但事实上,这三个概念是VBA编程的基石。只要理解它们之间的关系,...

P.O类型文推荐|年度编推合集(一百九十五篇)

点击左上方关注获取更多精彩推文目录2019年度编推35篇(1V1)《悖论》作者:流苏.txt(1V1)《桂花蒸》作者:大姑娘浪.txt(1V1)《豪门浪女》作者:奚行.txt...

Python参数传递内存大揭秘:可变对象 vs 不可变对象

90%的Python程序员不知道,函数参数传递中可变对象的修改竟会导致意想不到的副作用!一、参数传递的本质:对象引用传递在Python中,所有参数传递都是对象引用的传递。这意味着函数调用时传递的不是对...

JS 开发者必看!TC39 2025 最新动向,这些新语法要火?

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力。TC39第...

2025 年值得尝试的 5 个被低估的 JavaScript 库

这些JavaScript库可能不会在社交媒体或HackerNews上流行起来,但它们会显著提高您的工作效率和代码质量。JavaScript不再只是框架。虽然React、Vue和Sv...

Python自动化办公应用学习笔记30—函数的参数

一、函数的参数1.形参:o定义:在函数定义时,声明在函数名后面括号中的变量。o作用:它们是函数内部的占位符变量,用于接收函数被调用时传入的实际值。o生命周期:在函数被调用时创建,在函数执...

16种MBTI人格全解析|测完我沉默了三秒:原来我是这样的人?

MBTI性格测试火了这么久,你还不知道自己是哪一型?有人拿它当社交话题,有人拿它分析老板性格,还有人干脆当成择偶参考表。不废话,今天我一次性给你整理全部16种MBTI人格类型!看完你不仅能知道自己是谁...

JS基础与高级应用: 性能优化

在现代Web开发中,性能优化已成为前端工程师必须掌握的核心技能之一。本文从URL输入到页面加载完成的全过程出发,深入分析了HTTP协议的演进、域名解析、代码层面性能优化以及编译与渲染的最佳实践。通过节...

爱思创CSP-J/S初赛模拟赛线上开赛!助力冲入2024年CSP-J/S复赛!

CSP-J/S组初赛模拟赛爱思创,专注信奥教育19年,2022年CSP-J/S组赛事指定考点,特邀NOIP教练,开启全真实CSP-J/S组线上初赛模拟大赛!一、比赛对象:2024年备考CSP-J/S初...