百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

恒星耀发——浩瀚星空里的磁能释放

myzbx 2025-02-07 18:33 31 浏览

我们的太阳每天都发光发热,哺育着地球上的万物生长,可以说太阳就是地球上一切生命之源,万物生长靠太阳[1]。

看似和蔼可亲的太阳,和人一样,当内部“压力”积累到一定程度之后,有时候也会偶尔发发脾气,需要释放。人类感情的宣泄,往往是由于长时间精神压力的积累;而太阳发脾气则是由于太阳大气中磁场能量积累到一定程度的的结果。

这种“脾气”,首先由两位英国天文学家Richard Carrington[2]和Richard Hodgson[3]在1859年发生的一次巨大太阳爆发中观测到。这两位“同名”先生几乎在同一时间在距离不到几十英里的自家天文台里,看到了太阳的光学辐射有显著增强,见图1,史称“卡林顿事件(Carrington Event)”。这种增强被太阳物理学家称为“flare”,中国内地太阳物理学界译为“耀斑”,而中国台湾太阳物理学者则译为“闪焰”。

图1. 卡林顿在自家天文台上观测到的太阳辐射增强(图源:Carrington R. C., 1859, MNRAS, 20, 13)

这次太阳爆发一并产生了很多地球物理事件(在当时还不能科学的认识到两者的物理关联)。事件发生时,正值我国清代咸丰九年,当时疲弱的清政府正处在太平天国运动和第二次鸦片战争交织的内忧外患中无法自拔,但是即便如此,我们感谢认真负责的地方官员,使我们能从地方志中看到一些端倪。如果读者对卡林顿事件(Carrington Event)感兴趣,欢迎您关注我们后续的详细介绍。

早期对太阳耀斑的知识主要来源于地面望远镜光学波段的观测,但是随着观测仪器的不断进步,现在人们已经用高时间分辨率,高空间分辨率,全波段高能谱分辨率,抵近的观测设备对耀斑进行非常细致的观测[4,5]。尤其是对耀斑最敏感的软X射线波段,GOES卫星在几个太阳活动周内积累了大量的耀斑样本,为耀斑的研究提供了方便。一个经典的太阳耀斑轮廓见图2。

图2. 2006年12月13日GOES卫星观测到的一次X级耀斑的光变轮廓(图源:SWPC/NOAA http://www.swpc.noaa.gov)

太阳能发脾气,那漫天璀璨的星星是否也能发脾气呢?答案是肯定的,最早研究变星的恒星天文学家发现了此中玄机。在上世纪二三十年代,对高自行矮星的观测中,发现一些谱线具有强烈的变化。随后在一系列恒星的氢发射线中也发现了这种现象。然而直到1948年,来自威尔逊山天文台的天文学家对其中一颗高自行双星[6]的一次短时标快速光变进行了定量研究,才真正拉开了恒星耀发研究的序幕。

如今,这颗著名的恒星被称作鲸鱼座UV变星(UVCeti)[7], 之后的观测揭示出其在诸多波段上也同时存在快速变化,从而逐渐认识到其与太阳耀斑存在某种关联。因此,恒星的这种光变也被称做“flare”,但是由于对恒星缺少成像观测,恒星天文学家一般翻译成“耀发”。在接下来对恒星耀发进行地面观测的几十年里,观测到的样本多是M型矮星的耀发。由于M矮星本身光度低,所以一旦发生耀发,就易于在光变轮廓中辨认出来。

随着观测样本的逐渐增多,一个用来比较太阳和恒星磁场活动的研究方向——日星联系(solar-stellar connection)也逐渐成为热点[8]。一个很自然的想法,就是想比较一下太阳和与它长得像的恒星(类太阳恒星)在发脾气(耀发)的方式上有什么异同。然而在地面观测的几十年里,类太阳恒星的耀发样本非常少,难以进行较为有效的统计研究。

2009年,随着Kepler空间望远镜升空,一切有了明显改观。Kepler望远镜起初设计的主要科学目标是通过对恒星光变曲线的分析,通过凌星法实现对系外行星的搜寻[9]。Kepler是一个时域天文学的观测利器,对同一个天区进行连续观测, 见图3。科研数据产品分为long-cadence(低频采样数据,30分钟一次采样)和short-cadence(高频采样数据,1分钟一次采样)两种。

图3. Kepler空间望远镜与Kepler 观测天区(图源:NASA http://www.nasa.gov)

最近,国家天文台闫岩博士、贺晗研究员等人发表在英国《皇家天文学会月刊:快报》上的一篇论文(MNRAS: Letters, 2021, 505, L79-L83)就是基于Kepler高频采样数据,对恒星耀发光变轮廓的精细结构进行研究,从而揭示出类太阳恒星耀发的特征时间[10]。

太阳耀斑的光变轮廓呈现比较明显的先升-后降的特征,在耀斑研究者的术语里,这种两段式特征被分为“上升相”和“下降相”。本文的通讯作者、领导此项研究的贺晗研究员解释说:“一般来说,耀斑的上升相代表了太阳磁场能量通过磁重联过程快速释放的过程,而其下降相则代表了耀斑源区的逐渐冷却过程。因而,耀斑的上升相和下降相的特征时标,对耀斑研究具有非常重要的物理意义。”通过对Kepler数据的分析,我们发现恒星耀发也存在明显的先升-后降特征,如图4所示,为我们后续进行比较研究提供了很好的样本。

图4. 发生在KIC 4543412恒星上一次耀发的经典光变轮廓(图源:Yan Y. et al., 2021, MNRAS, 505, L79)

那么,如何选取样本呢?首先,需要找出和太阳长得像的恒星来。在这个研究中,我们采用了三个恒星物理中比较成熟的参数来界定,分别是有效温度、对数化的表面重力加速度和单星属性。太阳的有效温度约为5800K,对数化表面重力加速度约为4.4。我们找到了20颗与太阳长得很像的耀发恒星,并在其光变轮廓中找到了184个耀发样本。

闫岩博士说:“通过对样本的统计分析,我们得出类太阳恒星耀发的上升相和下降相的时间的中位数分别为5.9分钟和22.6分钟,这和太阳耀斑的结果非常相似。因此,我们可以这样说,类太阳恒星不仅和太阳长得像,连一颦(上升相)一笑(下降相)的调调也那么像,所以,它们应该具有相同的物理机制。”恒星耀发,正是浩瀚星空发生的剧烈磁能释放。

通过进一步研究,我们发现上升相和下降相的分布规律都具有明显的尖峰-长尾特征,符合统计学里的对数正态分布[11],置信水平达到0.95,如图5所示。

图5. 左侧为耀发样本上升相时间和下降相时间的对数正态分布图,右侧为上升相时间和下降相时间各自取对数后的正态分布图(图源:Yan Y. et al., 2021, MNRAS, 505, L79)

“类太阳恒星耀发上升相和下降相的分布都符合对数正态分布,这个结论会让我们把它当做研究其它类型恒星耀发特征时间的基准,从而看看其它类型的恒星在耀发行为上是否也和类太阳恒星差不多。”贺晗研究员评论说。

在太阳系中,太阳耀斑是空间天气的源。就耀斑本身来说,它可以影响到地球的空间环境,增加地球上层大气的电离度,从而影响到短波通讯或者低轨卫星的稳定性。而对于系外的恒星-行星系统来说,宿主恒星耀发产生的高能辐射也同样会参与系外行星大气的演化过程。

恒星耀发中产生的紫外辐射通量变化会对系统内的行星大气产生作用,进而影响到系外行星的宜居性问题。因此,通过对恒星耀发特征时间的研究,有助于我们为将来的星际移民做好准备。

在某次关于太阳-恒星物理的学术讨论会上,紫金山天文台的熊大闰院士曾经说:“对于太阳来说,我们得到的是丰富的、细致的耀斑样本;然而对于恒星来说,我们获取的是各种不同类型恒星的耀发信息。”

把时光放回到160多年前,Richard Carrington在他对太阳耀斑具有奠基性意义的论文里,文末引用了源自古希腊著名哲人亚里士多德的名言:“One swallow does not make a summer (一燕不成夏).”在当时那个年代,他已经隐约估计到了太阳耀斑发现的重要意义。

参考文献:

[1] 谭宝林,《太阳之美:一颗恒星的过去、现在和未来》,天津科学技术出版社,2019年,天津

[2] Carrington R. C., 1859, MNRAS, 20, 13

[3] Hodgson R., 1859, MNRAS, 20, 15

[4] 方成、丁明德、陈鹏飞,《太阳活动区物理》,南京大学出版社,2008年,南京

[5] 涂传诒、宗秋刚、何建森、田晖、王玲华,《日地空间物理学(第二版)上册:日球层物理》,科学出版社,2020年,北京

[6] Joy, A.H. & Humason, M.H., 1949, PASP, 61, 133

[7] 苏宜,《天文学新概论(第五版)》,科学出版社,2019年,北京

[8] Brun A. S., Browning M. K., 2017, Living Rev. Sol. Phys., 14, 4

[9] Borucki W. J. et al., 2010, Science, 327, 977

[10] Yan Y. et al., 2021, MNRAS, 505, L79

[11] Weisstein, Eric W. "LogNormal Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LogNormalDistribution.html

作者:闫岩

文稿编辑:赵宇豪

来源: 光明网

相关推荐

怎么恢复7z文件 7z文件删除了怎么恢复

7z是一种压缩格式的文件,它运用LZMA压缩算法,该压缩算法的输出稍后被算数编码进行处理以便后续进一步压缩,压缩比十分高。我们可以将文件压缩成这种格式,便于传输,保存,占空间少。了解更多7z文件知识...

郎酒让消费者喝得明明白白 算术题里有答案

日前,『郎酒酱香产品企业内控准则』颁布,郎酒首次公开酱香产品生产全过程,公布酱香产品产能、储能及投放计划。随后,郎酒官微向消费者发出「品控算术题」有奖问答。郎酒亮出家底,消费者踊跃留言。8天后,谜底揭...

学龄前,比识字、算术更重要的是这三件事

“为了给孩子选择一家合适的幼儿园,我曾穿梭于纽约各家幼儿园的开放日,这些幼儿员既包括主流的公立幼儿园,还包括那些遥不可及的私人幼儿园。我的目的就是想了解他们的教育理念是什么,到底厉害在哪里,看看对于我...

参加CSP-J信奥赛需要掌握数学知识

在C++语法的学习中需要储备的数学知识如下①数据类型:需要知道整数、正整数、负整数、小数、判断对错②算术运算符:加法、减法、乘法、除法、取模运算③关系表达式:大于、大于等于、小于、小...

1g米饭能做多少深蹲?今天我们来算一算

减重我们都知道3分在练,7分在吃,吃这件事情上,真的是每一口都算数。今天我们来算一笔账,1粒米饭可以做多少事情?本着认真负责的态度,今天在食物秤上称了1g米饭,是16粒。根据能量换算:100g米饭是4...

web 自动化测试,一定得掌握的 8 个核心知识点

使用cypress进行端对端测试,和其他的一些框架有一个显著不同的地方,它使用JavaScript作为编程语言。传统主流的selenium框架是支持多语言的,大多数QA会的pytho...

大话C语言:赋值运算符(c语言中赋值运算符是什么)

赋值运算符是最基本的运算符之一,用于将右侧的值或表达式的计算结果赋给左侧的变量。它是一个二元运算符,意味着它需要两个操作数:一个是目标变量(左侧),另一个是要赋给该变量的值或表达式(右侧)。赋值运算符...

Vue进阶(幺幺伍):js 将字符串转换为boolean

Boolean();参数为0、null和无参数返回false,有参数返回true。Boolean("");//输出为:falseBoolean(null);//输出为...

mongodb查询的语法(大于,小于,大于或等于,小于或等于等等)

1).大于,小于,大于或等于,小于或等于$gt:大于$lt:小于$gte:大于或等于$lte:小于或等于例子:db.collection.find({"field":{$gt:valu...

Python学不会来打我(21)python表达式知识点汇总

在Python中,表达式是由变量、运算符、函数调用等组合而成的语句,用于产生值或执行特定操作。以下是对Python中常见表达式的详细讲解:1.1算术表达式涉及数学运算的表达式。例如:a=5b...

C|数据存储地址与字节偏移、数据索引

话说C是面向内存的编程语言。数据要能存得进去,取得出来,且要考虑效率。不管是顺序存储还是链式存储,其寻址方式总是很重要。顺序存储是连续存储。同质结构的数组通过其索引表示位置偏移,异质结构的结构体通过其...

下班后累懵?4 个 JS 手写题帮你搞定前端面试高频考点

打工人下班后最痛苦的事,莫过于拖着疲惫的身子还要啃前端面试题吧?看着那些密密麻麻的JS代码,脑子都快转不动了!别担心,今天咱就用轻松的方式,带你吃透4道高频手写题,让你在面试时自信满满,再也不...

嵌入式数据库sqlite3【进阶篇】-子句和函数的使用,小白一文入门

sqlite在《嵌入式数据库sqlite3命令操作基础篇-增删改查,小白一文入门》一文中讲解了如何实现sqlite3的基本操作增删改查,本文介绍一些其他复杂一点的操作。比如where、orderby...

前缀表达式与后缀表达式(前缀表达式后缀表达式中缀表达式计算)

昨天晚上和儿子一起学习了前缀表达式和后缀表达式。这应该是字符串算式如何被计算机识别并计算的2种方法。本来是想先给他讲一个逆波兰式(后缀表达式),以后再讲前缀表达式。没想到他还挺聪明,很快就把2个都掌握...

Python快速入门教程1:基本语法、数据类型、运算符、数字字符串

Python3的基础教程,涵盖了基本语法、数据类型、类型转换、解释器、注释、运算符、数字和字符串等内容,并附有使用实例场景。Python3的基础教程,涵盖了基本语法、数据类型、类型转换、解释器、注释、...