百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

非常牛批的可视化库Plotly

myzbx 2025-05-27 16:22 19 浏览

1.plotly库的相关介绍

1)相关说明

  • plotly是一个基于javascript的绘图库,plotly绘图种类丰富,效果美观;
  • 易于保存与分享plotly的绘图结果,并且可以与Web无缝集成;
  • ploty默认的绘图结果,是一个HTML网页文件,通过浏览器可以直接查看;

2)plotly与matplotlib、seaborn的关系

需要注意的是,ployly绘图库与matplotlib绘图库、seaborn绘图库并没有什么关系。也就是说说plotly是一个单独的绘图库,有自己独特的绘图语法、绘图参数和绘图原理,因此我们需要单独学习它。

2.导入相关库

对于我们做数据分析的人员来说,一般用的都是离线绘图库。在线绘图库需要的话,可以自己百度研究。

import os
import numpy as np
import pandas as pd

import plotly as py
import plotly.graph_objs as go
import plotly.expression as px
from plotly import tools

import warnings
warnings.filterwarnings("ignore")

3.plotly绘图原理

1)ployly常用的两个绘图模块:graph_objs和expression

graph_objsexpression是plotly里面两个很常用的绘图库,graph_objs相当于matplotlib,在数据组织上比较费劲,但是仍然比起matplotlib绘图更简单、更好看。这里说的费劲是相对于expression库来说的。expression库相当于seaborn的地位,在数据组织上较为容易,绘图比起seaborn来说,也更加容易。这里你心里有个印象即可,知道这两个绘图库很牛,就行了。

对于graph_objs绘图库,我们常命名为go(import plotly.graph_objs as go);对于expression绘图库,我们常命名为px(import plotly.expression as px)。

2)graph_objs("go")库的绘图原理

① 简单的案例说明

df = pd.read_excel("plot.xlsx")
# 步骤一
trace0 = go.Scatter(x=df["年份"],y=df["城镇居民"],name="城镇居民")
trace1 = go.Scatter(x=df["年份"],y=df["农村居民"],name="农村居民")
# 步骤二
data = [trace0,trace1]
# 步骤三
fig = go.Figure(data)
# 步骤四
fig.update_layout(
    title="城乡居民家庭人均收入",
    xaxis_title="年份",
    yaxis_title="人均收入(元)"
)
# 步骤五
fig.show()

结果如下:

② 原理说明

  • 1、绘制图形轨迹,在ployly里面叫做trace,每一个轨迹是一个trace
  • 2、将轨迹包裹成一个列表,形成一个轨迹列表。一个轨迹放在一个列表中,多个轨迹也是放在一个列表中。
  • 3、创建画布的同时,并将上述的轨迹列表,传入到Figure()中。
  • 4、使用Layout添加其他的绘图参数,完善图形。
  • 5、展示图形。

3)expression("px")库的绘图原理

① 简单的案例说明

iris = pd.read_excel("iris.xlsx",sheet_name="Sheet2")

fig = px.scatter(iris,x="花萼长度",y="花萼宽度",color="属种")
fig.show()

结果如下:

② 原理说明

  • 1、直接使用px调用某个绘图方法时,会自动创建画布,并画出图形。
  • 2、展示图形。

4.保存图形的两种方式

1)直接下载下来:保存成png静态图片

2)使用py.offline.plot(fig,filename="XXX.html")代码保存成html网页动态图片。

iris = pd.read_excel("iris.xlsx",sheet_name="Sheet2")

fig = px.scatter(iris,x="花萼长度",y="花萼宽度",color="属种")
py.offline.plot(fig,filename="iris1.html")

结果如下:该文件是一个html文件,这里上传不了,自己下去尝试一下就知道了。

3)总结说明

使用“照相机”那个下载按钮,可以直接将图片下载保存在本地,但是这个图片是一个静态图片,没有交互性。但是使用py.offline.plot()方法,可以将图片保存成一个html的网页格式,其他人可以在电脑上直接打开这个html网页,并且保留了图片的原始样式,具有交互性。

5.绘制双y轴图

1)数据集如下

2)绘制不同地区的“任务完成量”和“任务完成率”情况

df = pd.read_excel("double_y.xlsx")

x = df["地区"]
y1 = df["完成量"]
y2 = df["完成率"]

trace0 = go.Bar(x=x,y=y1,
                marker=dict(color=["red","blue","green","darkgrey","darkblue","orange"]),
                opacity=0.5,
               name="不同地区的任务完成量")

trace1 = go.Scatter(x=x,y=y2,
                    mode="lines",
                    name="不同地区的任务完成率",
                    # 【步骤一】:使用这个参数yaxis="y2",就是绘制双y轴图
                    yaxis="y2")

data = [trace0,trace1]

layout = go.Layout(title="不同地区的任务完成量和任务完成率情况",
                   xaxis=dict(title="地区"),
                   yaxis=dict(title="不同地区的任务完成量"),
                   # 【步骤二】:给第二个y轴,添加标题,指定第二个y轴,在右侧。
                   yaxis2=dict(title="不同地区的任务完成率",overlaying="y",side="right"),
                   legend=dict(x=0.78,y=0.98,font=dict(size=12,color="black")))

fig = go.Figure(data=data,layout=layout)
fig.show()

结果如下:

6.绘制多子图

1)相关库和方法介绍

  • 1、绘制多个子图,需要先导入tools库。from plotly import tools
  • 2、tools.make_subplots(rows= ,cols=)用于指定绘图布局,rows和cols表示将画布布局成几行几列。
  • 3、fig.append_trace()将每个图形轨迹trace,绘制在不同的位置上。

2)分别绘制不同地区的“任务完成量”和“任务完成率”情况

# 步骤一:导入相关库
from plotly import tools
# 步骤二:指定绘图布局
fig = tools.make_subplots(rows=2,cols=1)
# 步骤三:绘制图形轨迹
trace0 = go.Bar(x=x,y=y1,
                marker=dict(color=["red","blue","green","darkgrey","darkblue","orange"]),
                opacity=0.5,
                name="不同地区的任务完成量")       
trace1 = go.Scatter(x=x,y=y2,
                    mode="lines",
                    name="不同地区的任务完成率",
                    line=dict(width=2,color="red"))
 # 步骤四:将第一个轨迹,添加到第1行的第1个位置
 #        将第二个轨迹,添加到第2行的第1个位置                  
fig.append_trace(trace0,1,1)
fig.append_trace(trace1,2,1)
# 步骤四:根据自己的需求,给图形添加标题。height、width参数用于指定图形的宽和高
fig.update_layout(title="不同地区的任务量与完成量",height=800,width=800)
# 步骤五:展示图形
fig.show()

结果如下:

相关推荐

别让水 “跑” 出卫生间!下沉设计打造滴水不漏的家

你是否遭遇过卫生间的水“偷偷溜”进客厅,导致木地板鼓起、墙角发霉的糟心事?又是否为卫生间门口反复渗漏,不得不一次次返工维修而头疼不已?在家庭装修中,卫生间防水堪称“兵家必争之地”,而卫生间门口下...

歼-10CE vs 阵风:谁才是空中霸主?全面性能对比解析

歼10CE与法国阵风战斗机性能深度对比分析一、总体定位与设计哲学歼10CE:单发中型多用途战斗机,侧重于空优(制空权争夺)和对地对海打击,具有较高的性价比和较强的多任务能力。法国阵风战斗机:双发中型多...

知名移植工作室肯定Switch2的图形性能,却被CPU拖了后腿

虽然Switch2发售多日,但没入手的玩家对其性能还是有顾虑。近日,知名移植工作室Virtuos的技术总监在接受采访时讨论了Switch2的性能,并给出了他们工作室的评价。简单来说,Switch2在D...

虹科实测 | CAN XL vs CAN FD传输性能深度对比:速率翻倍,抖动锐减!

导读在汽车电子与工业通信领域,CAN协议持续进化,推动着数据传输效率的提升。本次实测基于虹科PCAN-USBXL与虹科PCAN-USBProFD硬件,在同等严苛条件下对比CANXL与CANF...

1J117合金材料优异的耐腐蚀性、机械性能

1J117合金材料概述定义:1J117是一种不锈软磁精密合金,属于铁铬基合金,其圆棒产品具有特定的形状和尺寸,可满足各种工业应用中的特定需求。标准:技术条件标准为GB/T14986,品种规格标准...

据高管所称,Switch2能轻松移植XSS平台60帧游戏

任天堂,作为主机游戏界的御三家之一,一直注重游戏性而不注重更新升级硬件设备是其最大的特点。各位任豚们,忍受着任天堂早已落后硬件设备,真想感叹一句,天下苦任久矣!但Switch2的出现或许正在渐渐的改变...

FJK-110LED-HXJSN磁传感器有哪应用

作为一名从事电子技术相关工作的自媒体人,我经常会遇到各种传感器的应用问题。其中,FJK-110LED-HXJSN磁传感器是一款在工业自动化、智能设备等领域比较常见的磁场检测元件。今天我想和大家聊一聊这...

浅谈欧标方管200x200x5-12mm质S275JRH的优势与劣势

欧标方管200x200x5-12mm材质S275JRH是一种常见的结构用钢材,广泛应用于建筑、机械制造、桥梁、钢结构等领域。本文将对这种方管的优势与劣势进行浅谈,以帮助读者更好地了解其特性和适用场景。...

宽带拨号错误 651 全解析:故障定位与修复方案

在使用PPPoE拨号连接互联网时,错误651提示「调制解调器或其他连接设备报告错误」,通常表明从用户终端到运营商机房的链路中存在异常。以下从硬件、系统、网络三层维度展开排查:一、故障成因分类图...

模型微调:从理论到实践的深度解析

在人工智能领域,模型微调已成为提升模型性能、使其适应特定任务的关键技术。本文将全面系统地介绍模型微调的各个方面,帮助读者深入理解这一重要技术。一、什么是模型微调模型微调是指在已经训练好的预训练模型基础...

汉语拼音 z、c、s图文讲解(拼音字母表zcs教学视频)

以下是汉语拼音z、c、s的图文讲解,结合发音要领、书写规范及教学技巧:一、发音方法与口诀1.z的发音发音要领:舌尖轻抵上齿背,形成阻碍后稍放松,气流从窄缝中挤出,声带不振动(轻短音)。口诀:“写字写...

吴姗儒惹怒刘宇宁粉丝!吴宗宪护航「是综艺梗」叮咛女儿对话曝光

记者孟育民/台北报道Sandy吴姗儒在《小姐不熙娣》因为节目效果,将男星刘宇宁的头像踩在地上,引起粉丝怒火,节目发声明道歉后仍未平息,她也亲自发文郑重道歉:「我对刘宇宁本人完全没有任何恶意,却在综艺表...

苹果错误地发布了macOS Tahoe公开测试版 现已将其撤下

一些Beta测试人员下载了他们以为是macOSSequoia15.6RC的版本,但却错误地下载了macOSTahoe26公开测试版,后来苹果修复了该问题。苹果预计将于7月25...

make的多种用法!(make 的用法总结)

一、make的用法美make[meik]①V.制造;制定,拟定;使变得,使处于;造成,引起;整理(床铺);做,作出;强迫;挑选,任命…②n.(机器、设备等的)品牌,型号;结构,构造;通电,接电⑤[...

北顿尖刀哗变?俄第20近卫集团军损失惨重,拒绝执行指挥官命令?

【军武次位面】作者:太白近日,外国社交媒体“电报”上传出了一些消息,称俄罗斯在北顿涅兹克战场上的“尖刀”部队之一,俄第20近卫集团军因为损失惨重,已经出现了部分部队拒绝执行指挥官命令,甚至哗变的情况。...