百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

R中单细胞RNA-seq分析教程 (7)(单细胞rna测序分析)

myzbx 2025-02-03 14:12 30 浏览

引言

本系列开启R中单细胞RNA-seq数据分析教程[1],持续更新,欢迎关注,转发!

2.3. 使用 LIGER 进行数据整合

除了 Harmony 和 Seurat,Evan Macosko 实验室开发的 LIGAR 也是被基准论文重点介绍的另一个数据整合工具。LIGAR 通过集成非负矩阵分解来识别共享和数据集特定的因素,以进行联合分析。该方法的详细数学原理可以在 论文 中找到。它作为 R 语言中的 liger 包实现,并提供了一个适用于 Seurat 对象的包装器,这也依赖于 R 语言中的额外包 SeuratWrappers。

library(liger)
library(SeuratWrappers)

seurat <- merge(seurat_DS1, seurat_DS2) %>%
    FindVariableFeatures(nfeatures = 3000)
seurat <- ScaleData(seurat, split.by = "orig.ident", do.center = FALSE)
seurat <- RunOptimizeALS(seurat, k = 20, lambda = 5, split.by = "orig.ident")
seurat <- RunQuantileAlignSNF(seurat, split.by = "orig.ident")
seurat <- RunUMAP(seurat, dims = 1:ncol(seurat[["iNMF"]]), reduction = "iNMF")
seurat <- FindNeighbors(seurat, reduction = "iNMF", dims = 1:ncol(Embeddings(seurat, "iNMF"))) %>%
    FindClusters(resolution = 0.6)

# You may also want to save the object
saveRDS(seurat, file="integrated_liger.rds")

和之前一样,接下来将使用 UMAP 来展示整合后的结果,包括数据集、聚类情况以及一些特征图。

plot1 <- UMAPPlot(seurat, group.by="orig.ident")
plot2 <- UMAPPlot(seurat, label = T)
plot3 <- FeaturePlot(seurat, c("FOXG1","EMX1","DLX2","LHX9"), ncol=2, pt.size = 0.1)
((plot1 / plot2) | plot3) + plot_layout(width = c(1,2))

如果你想提升 LIGER 整合的效果,除了在 FindVariableFeatures 函数中设置 nfeatures 参数之外,RunOptimizeALS 函数中的参数也很重要,比如 k 和 lambda。LIGAR 提供了 suggestK 和 suggestLambda 两个函数来帮助设定这两个参数。遗憾的是,这两个参数并没有对应的 Seurat 包装函数,或者需要使用独立的 liger 包及其 LIGER 数据类型来使用这两个函数,而且这两个函数运行起来相当慢。人们也可以根据一些原则进行猜测和调整,比如数据中如果有更多的子结构,可能需要更大的 k 值;更大的 lambda 值会更强地抑制数据集特定的效应,这可能有助于更好地混合不同数据集中的细胞,但也可能以过度整合为代价(例如混合具有不同表达特征的细胞)。

2.4. 使用 MNN 进行数据整合

MNN,由 EMBL-EBI 的 John Marioni 实验室开发,是最早为单细胞 RNA 测序数据整合或批次校正开发的算法之一。它通过两个不同样本/批次之间的细胞的相互最近邻来估计细胞特定的校正向量,以引入对查询细胞降维(例如 PCA)的校正。MNN 还引入了一个排序机制,因此也支持两个以上样本/批次的整合。

RunFastMNN 函数接受一个包含多个 Seurat 对象的列表作为输入,其中每个 Seurat 对象代表一个单独的样本或批次。如果需要根据某个元数据列将一个 Seurat 对象拆分成多个子对象,可以使用 Seurat 包提供的 SplitObject 函数来实现。

library(SeuratWrappers)

seurat_samples <- SplitObject(seurat, "orig.ident")
seurat_mnn <- RunFastMNN(seurat_samples)
seurat[['mnn']] <- CreateDimReducObject(Embeddings(seurat_mnn, "mnn")[colnames(seurat),], key="MNN_")
seurat <- RunUMAP(seurat, dims = 1:20, reduction = "mnn")
seurat <- FindNeighbors(seurat, reduction = "mnn", dims = 1:20) %>%
    FindClusters(resolution = 0.6)

# You may also want to save the object
saveRDS(seurat, file="integrated_mnn.rds")

接下来,可以通过 UMAP 嵌入图来评估整合方法的效果。

plot1 <- UMAPPlot(seurat, group.by="orig.ident")
plot2 <- UMAPPlot(seurat, label = T)
plot3 <- FeaturePlot(seurat, c("FOXG1","EMX1","DLX2","LHX9"), ncol=2, pt.size = 0.1)
((plot1 / plot2) | plot3) + plot_layout(width = c(1,2))

整合的结果看起来很有前景。在大多数情况下,MNN 使用默认参数就能取得很好的效果。当然,用户也可以通过调整一些参数来优化整合,比如改变特征数量或提供一套完全定制的特征集给整合过程。这可以通过在 RunFastMNN 包装函数中设置 features 参数来实现。此外,用户还可以向原始函数传递更多参数(例如,在 batchelor 包中的 fastMNN 函数,可以指定计算的 PCs 数量)。

2.5. 利用 RSS 整合到 BrainSpan 数据

Seurat、Harmony、LIGER 和 MNN 可能是目前最广泛使用的通用单细胞 RNA 测序数据整合方法,但也存在其他方法和概念可以应用于数据整合。其中一个概念是,如果存在一个包含多个样本的参考数据集,并且这些样本间的差异能够反映出样本中细胞类型的异质性,那么通过将每个细胞与这些参考样本的转录组相似性作为表示,而不是直接使用其转录组轮廓,可以有效地过滤掉技术噪声,同时保留关键信息。

进行这种分析时,首先需要一个优质的参考数据集。对于脑类器官样本而言,艾伦脑图谱(Allen Brain Atlas)提供的 BrainSpan 人类大脑批量 RNA-seq 数据集,涵盖了从早期胎儿发育到成人的阶段,是一个非常好的选择。

ref_brainspan <- readRDS("data/ext/brainspan_fetal.rds")

下一步,将计算每个细胞与参考样本之间的相似度,或者进行标准化的皮尔逊相关性分析。simspec 包提供了一个方便的函数来完成这一步骤。分析结果作为一种降维表示,会保存在 Seurat 对象中(默认名称为 "rss")。之后,可以利用这种降维表示进行 tSNE/UMAP 可视化和聚类分析等。

library(simspec)
seurat <- merge(seurat_DS1, seurat_DS2)
seurat <- ref_sim_spectrum(seurat, ref)
seurat <- RunUMAP(seurat, reduction="rss", dims = 1:ncol(Embeddings(seurat, "rss")))
seurat <- FindNeighbors(seurat, reduction = "rss", dims = 1:ncol(Embeddings(seurat, "rss"))) %>%
    FindClusters(resolution = 0.6)

plot1 <- UMAPPlot(seurat, group.by="orig.ident")
plot2 <- UMAPPlot(seurat, label = T)
plot3 <- FeaturePlot(seurat, c("FOXG1","EMX1","DLX2","LHX9"), ncol=2, pt.size = 0.1)
((plot1 / plot2) | plot3) + plot_layout(width = c(1,2))

观察到了令人满意的细胞轨迹,两个样本的细胞似乎以一种合理的模式混合。然而,你可能已经注意到,在比较聚类结果和特定基因(例如 LHX9)表达时存在问题。

即使你对这一结果感到满意,RCA/RSS 有一个明显的局限:必须有一个优质的参考数据集可供使用,以便能够在不损失太多信息的情况下计算相似性。如果你的数据集中包含一些在参考数据中完全未被覆盖的有趣信号,这些信号很可能会被忽略。由于 RSS 完全基于与参考数据的相似性来表示数据,如果参考数据没有变化,那么改善结果的空间就非常有限。在 ref_sim_spectrum 函数中,唯一可能通过改变而有益的参数是 method 参数,它定义了要计算的相关性类型。默认情况下,使用的是皮尔逊相关(method = "pearson"),但也可以选择使用斯皮尔曼相关(method = "spearman")。

2.6. 使用 CSS 进行数据整合

最终,将尝试本教程中的最后一种数据整合方法,即 RCA/RSS 的扩展版本。与使用外部参考数据集通过相似性来表示数据中的细胞不同,CSS 首先对每个待整合的单细胞 RNA 测序样本进行细胞聚类,然后使用这些聚类得到的平均表达谱作为参考,来计算相似性。

library(simspec)
seurat <- merge(seurat_DS1, seurat_DS2) %>%
    FindVariableFeatures(nfeatures = 3000) %>%
    ScaleData() %>%
    RunPCA(npcs = 50)
seurat <- cluster_sim_spectrum(seurat, label_tag = "orig.ident", cluster_resolution = 0.3)
seurat <- RunUMAP(seurat, reduction="css", dims = 1:ncol(Embeddings(seurat, "css")))
seurat <- FindNeighbors(seurat, reduction = "css", dims = 1:ncol(Embeddings(seurat, "css"))) %>%
    FindClusters(resolution = 0.6)

plot1 <- UMAPPlot(seurat, group.by="orig.ident")
plot2 <- UMAPPlot(seurat, label = T)
plot3 <- FeaturePlot(seurat, c("FOXG1","EMX1","DLX2","LHX9"), ncol=2, pt.size = 0.1)
((plot1 / plot2) | plot3) + plot_layout(width = c(1,2))

CSS 在合并数据集时基于定义的 PCA 对每个数据集进行聚类,因此在 FindVariableFeatures 函数中的 nfeatures 参数以及 cluster_sim_spectrum 函数中的 dims 参数都会影响所使用的主成分。此外,CSS 对每个数据集独立进行聚类,其中 cluster_sim_spectrum 函数的 cluster_resolution 参数(默认值为 cluster_resolution = 0.6)定义了聚类的分辨率。更高的分辨率能够捕捉数据中更细微的结构,这可能有助于更好地保留数据的结构特征,但同时也可能保留了更多的数据集特有的差异。

[1]Source: https://github.com/quadbio/scRNAseq_analysis_vignette

相关推荐

零基础入门AI智能体:详细了解什么是变量类型、JSON结构、Markdown格式

当品牌跳出固有框架,以跨界联动、场景创新叩击年轻群体的兴趣点,一场关于如何在迭代中保持鲜活的探索正在展开,既藏着破圈的巧思,也映照着与新一代对话的密码。在创建AI智能体时,我们会调用插件或大模型,而在...

C# 13模式匹配:递归模式与属性模式在真实代码中的性能影响分析

C#13对模式匹配的增强让复杂数据处理代码更简洁,但递归模式与属性模式的性能差异一直是开发者关注的焦点。在实际项目中,选择合适的模式不仅影响代码可读性,还可能导致执行效率的显著差异。本文结合真实测试...

零基础快速入门 VBA 系列 6 —— 常用对象(工作簿、工作表和区域)

上一节,我介绍了VBA内置函数以及如何自动打字和自动保存文件。这一节,我们来了解一下Excel常用对象。Excel常用对象Excel有很多对象,其中最常用也最重要的包括以下3个:1.Workbo...

不同生命数字的生肖龙!准到雷普!

属龙的人总在自信爆棚和自讨苦吃之间反复横跳?看完这届龙宝宝的日常我悟了。属龙的人好像天生自带矛盾体:领导力超强可人缘时好时坏,工作雷厉风行却总在爱情里翻车。关键年份的龙性格差异更大——76年龙靠谱但不...

仓颉编程语言基础-面向对象编程-属性(Properties)

属性是仓颉颉中一种强大的机制,它允许你封装对类(或接口interface、结构体struct、枚举enum、扩展extend)内部状态的访问。它看起来像一个普通的成员变量(字段),但在其背后,它通过...

Python中class对象/属性/方法/继承/多态/魔法方法详解

一、基础入门:认识类和对象1.类和对象的概念在Python中,类(class)是一种抽象的概念,用于定义对象的属性和行为,而对象(也称为实例)则是类的具体表现。比如,“汽车”可以是一个类,它有...

VBA基础入门:搞清楚对象、属性和方法就成功了一半

如果你刚接触VBA(VisualBasicforApplications),可能会被“对象”“属性”“方法”这些术语搞得一头雾水。但事实上,这三个概念是VBA编程的基石。只要理解它们之间的关系,...

P.O类型文推荐|年度编推合集(一百九十五篇)

点击左上方关注获取更多精彩推文目录2019年度编推35篇(1V1)《悖论》作者:流苏.txt(1V1)《桂花蒸》作者:大姑娘浪.txt(1V1)《豪门浪女》作者:奚行.txt...

Python参数传递内存大揭秘:可变对象 vs 不可变对象

90%的Python程序员不知道,函数参数传递中可变对象的修改竟会导致意想不到的副作用!一、参数传递的本质:对象引用传递在Python中,所有参数传递都是对象引用的传递。这意味着函数调用时传递的不是对...

JS 开发者必看!TC39 2025 最新动向,这些新语法要火?

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力。TC39第...

2025 年值得尝试的 5 个被低估的 JavaScript 库

这些JavaScript库可能不会在社交媒体或HackerNews上流行起来,但它们会显著提高您的工作效率和代码质量。JavaScript不再只是框架。虽然React、Vue和Sv...

Python自动化办公应用学习笔记30—函数的参数

一、函数的参数1.形参:o定义:在函数定义时,声明在函数名后面括号中的变量。o作用:它们是函数内部的占位符变量,用于接收函数被调用时传入的实际值。o生命周期:在函数被调用时创建,在函数执...

16种MBTI人格全解析|测完我沉默了三秒:原来我是这样的人?

MBTI性格测试火了这么久,你还不知道自己是哪一型?有人拿它当社交话题,有人拿它分析老板性格,还有人干脆当成择偶参考表。不废话,今天我一次性给你整理全部16种MBTI人格类型!看完你不仅能知道自己是谁...

JS基础与高级应用: 性能优化

在现代Web开发中,性能优化已成为前端工程师必须掌握的核心技能之一。本文从URL输入到页面加载完成的全过程出发,深入分析了HTTP协议的演进、域名解析、代码层面性能优化以及编译与渲染的最佳实践。通过节...

爱思创CSP-J/S初赛模拟赛线上开赛!助力冲入2024年CSP-J/S复赛!

CSP-J/S组初赛模拟赛爱思创,专注信奥教育19年,2022年CSP-J/S组赛事指定考点,特邀NOIP教练,开启全真实CSP-J/S组线上初赛模拟大赛!一、比赛对象:2024年备考CSP-J/S初...